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RADIATIVE TRANSFER IN SPECTRAL LINES WITH SELF-ABSORPTION 
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In calculations of radiative heat transfer in gas layers with non- 

uniform temperature distributions one often must taken into account 

the strong spectral dependence of the absorption coefficient. The 
analytical relations governing the problem are quite complicated, 
and even in the case of the monochromatic specific intensity these 
relations take a simple form only for the plane problem. Therefore 
there arises the need for approximate methods of calculation, which, 
in particular, may be based on the differential approximation for 
radiative heat transfer. In this paper we consider two problems-we 
compare the differential approximation with the exact solution for 
the case of a plane layer, and we propose a method of calculating 
the radiative heat transfer in spectral lines. 
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monochromatic absorption coefficient per unit volume [cm "l] 
frequency [see -z] 
frequency at line center [see "l] 
speed of light [cm �9 sec "l] 
Stefan-Boltzmann constant 
absolute temperature [ N]  

monochromatic radiative flux vector (per unit frequency 
interval) [erg/cm ~ �9 sec �9 sec -1] 
monochromatic and equilibrium radiation energy density 
[erg �9 cm "a] 
extrapolated length 

qAv= l qfl~ [erg/em2 sec] ' c%i~  

Av 

% /0*(erg/crn2sec.sec -1 ) A ~v-v0=0g./o'tsec -1 

i X ] 

a x(em) 1 
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1. We consider a typical case of radiative transfer in spectral 
lines (electric arcs [1], high-temperature gas flows, etc.) .  The 
model is a plane layer of argon with the temperature distribution 
shown in Fig. la.  We assume local thermodynamic equilibrium. 
The radiative transfer is to be calculated for the strong resonance line 
3p-4s,  with oscillator strength 0.2. The broadening of this line is 
mainty due to resonance and to the quadratic Stark effect. In this 
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case most of the energy is transferred relatively far from the center 
of the line, where the line profile has a dispersive character. Figure lb 

shows the profile of the quantity k v (v - v0) ~ as a function of the 
thickness of the gas layer. In the frequency range between v t -- v0 -- 
= 0.25 �9 1012 sec -I and u z - v0 = 4 �9 1012 see "l, in which most of 

the energy is transfe/red, the absorption coefficient varies with fre- 
quency by a factor of 250 and with temperature by a factor of 40. 

Exact expressions for the radiative flux vector qu and for the 
divergence div qu can be written in terms of integrals [2, 8]. To 
obtain an approximate solution we use the differential approximation 
(first term of an expansion in spherical harmonics [4]), represented 
by the equations 

1 t -~div%=cuv~ G = - -  ~-~- grad cur. (1.1) 

Inthe absence of external radiation incident on the gas layer, the 
boundary condition is 
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The differential approximation takes into account the integral 
nature of radiative transfer. In the limit k v-+ = the equation for 
q~) reduces to the diffusion approximation; in the limit k u -* 0 it 
reduces to the correct optically thin formulation; in the intermediate 
range of opacities it constitutes an approximation, whose accuracy 
can be estimated by comparison with exact solutions of the equation 
of radiative transfer. In the case of a plane layer, one can also use 
the approximation (1.1) to derive integral expressions for the variable 
qu and div qu" It should be noted that the half-range approximation 
with the average cosine equal to one-half [,3], does not lead to better 
results. 
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Figure 2 shows the profiles of qv across the layer for different 
frequencies, as calcnlated by the exact formulation (solid lines) and 
by the differential approximation (broken lines). Comparing these 
results one sees that in the intermediate range of opacities the dif- 
ferential approximation (1.1) results in a maximum error of 20:/0. In 
the range of high k u the error may be higher, but this is of little im- 
portance in view of the fact that the values qu and div qv themselves 
tend to zero. In the range of low k~j the error decreases, and for 
k u -~ 0 the approximation reduces to the correct optically thin for- 
mulation. Figure 3 shows the profile of qAv, where the range of 
integration is Av = vz -- u 1 = 3.75 �9 10 l= sec ~1. It can be seen that 
the error in the integrated radiative flux does not exceed 17%, and 
the error in div q:',v (Fig. 4) is of the same order. Thus, it appears 
that for most practical calculations the differential approximation 
yields acceptable accuracy. 

2. The spectral interval under the broadened line can be di- 
vided into three ranges [1]: (1) the range of high values of the ab- 
sorption coefficients, in which one may use the diffusion approxi- 
mation; (2) the range of low values of the absorption coefficient, 
in which one may use the optically thin formulation; and (3) the 
range of intermediate values of the absorption coefficient, in which 
one may use the differential approximation. As has been noted 
elsewhere [5,6], problems involving frequency-dependent absorp- 
tion coefficients may be solved by breaking up the spectrum into a 
number of intervaIs with nearly constant coefficients. It has also 
been noted, however, that the number of such intervals would be 

unrealistically large [7]. 
It would be unrealistic to attempt to solve the heat-conduction 

equation for each value of the frequency. Therefore there arises 

qa[hJ-e(er~/cmZsee)//I ei \ t 
I / /52.\ l i 

�9 e l / Y "  
4 7 / /  / 

Fig. 5 

the need for an appropriate method of averaging the absorption co- 
efficient. In the present case we subdivide range (3) of the argon 
line under consideration into a number of subintervals, within each 
of which the absorption coefficient varies by the same factor. In 
each subinterval the absorption coefficient was averaged by two 

methods, viz. ,  

'S k" ~ ~ k J r ,  
a~ (2.1) 

Figure 5 shows the integrated radiative flux q'~u (broken lines) and 
q')xv (dot-and-dash lilies) obtained by these two methods. 

The resuIts presented in this section were obtained using the 
differential approximation, The number next to each curve denotes 
the number of subintervals in range (3). The solid line represents 
the values of qAv obtained by integration over the frequency inter- 
val Av. It can be seen that the curves based on (2.1) lie on both 
sides of qzxv' and converge to qzxu with increasing number of sub- 
intervals. Even when the range (3) (in which practically aI1 the 
energy of the line is transferred) is divided into subintervals in 
which the absorption coefficient varies by a factor of four, the 

values of q'Au and q')xu differ from q2w by about 10~ . 
It should be noted that in the model considered here range (S) 

corresponds to the dispersive asymptotic profile, it can be shown 
(using (2.1)), that a different power function in the dispersion 
asymptote would not increase the deviation of q:,u and qdxv from 

q&v. Thus, dividing the energetiealIy significant part of the 

spectral line into a small number of subintervals (four in the pres- 
ent case), one obtains acceptabIe accuracy with either one of the 
two averaging methods (2.1). Using the geometric mean of the 
two averages k' and k", 

< k > = ( 5  ~ , C dv,'/~ 

one obtains even better results. 
Figure 6 shows the values of qz~u caIeulated on the basis of 

(2.2). The number next to broken line denotes the number o f  sub- 
intervals. Even if one calculates the average over the whole re- 
gion (3) in one step (k v varies by a factor of more than 250), the 
error in the range of high temperatures (which is usually the most 
important) is smalI, When one uses two subintervals the error 
does not exceed 20%. In the case of three subintervals (circles) 
there is practically no difference between the approximate and the 
exact calculation. 
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Figure ? shows the values of div qAv calculated on the basis 
of (2.2). The broken lines represent values obtained using one and 
two subintervals, and the circles represent values obtained using 
three subintervals. 

"ZO 

zoa!vq,~,, :P-a(erg/cm a see) 

I 

t i i 

t v  t 
~..t It'~ 

Fig. 7 

, : '  

: x(cm) 
/ 

I 

I 
I 
I 
I 

Problems involving several self-absorbing lines can be treated 

in the following manner: The lines are divided into groups, in 

each of whicb the absorption coefficient k~ has the same tempera- 

ture dependence. This can be done if all the transitions in a group 
have the same lower state (or if their lower states are close to each 
other) and if the line half-widths vary in the same way ever the 
whole range of temperatures. This last requirement is quite severe, 
as usually different broadening mechanisms predominate in different 
ranges of temperature. The problem can often be simplified, how- 
ever, since usually one is interested mainly in the energy transfer 
at high temperatures, as, e .g . ,  in the calculation of arcs. In such 
cases one can usually identify a single dominant broadening mech- 
anism for a large group of lines. In the case of argon, for example, 
the strongest transitions to the ground level at high temperatures are 
broadened by the quadratic Stark effect, so that all these lines can 
be considered as one group. Under these conditions, all lines be- 
longing to a single group can be accounted for by the same average 
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absorption coefficients. The energy transferred in corresponding 
ranges of the absorption coefficient can then be represented by sums 
of apparent emissivities s 1 + s 2 + . . .  of  the corresponding spectral 
intervals. 

Thus. a large class of problems of radiative transfer in a sys- 
tem of self-absorbing lines can be treated using a small  number of  
average absorption coefficients if  the averaging method described 
above is used. 

The averaging method described here can be used both for 
exact and for approximate formulations of radiative transfer. In 
this paper we have considered the differential approximation, because 
this approximation leads to simple results in a more general class of 
cases, e . g . ,  in the ease of cylindrical symmetry [1]. Clearly, the 
averaging method presented here can be extended to the ease of a 
continuous spectrum, 
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